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Abstract—The market risks encountered by energy asset oper-
ators can be categorized as short term/operational, intermediate
term/trading, and long term/valuation in nature. This paper
describes how the market risks in operations can be measured and
managed using real option models and stochastic optimization
techniques. It then links these results to intermediate term value
at risk and related risk metrics such as cash flow, earnings, and
credit risk which can be used to measure trading risks over weeks
to months; and how to optimize these portfolios for risk-return
relationships. Finally, it then explores the risks in longer term
energy portfolio management and how these can be simulated,
measured, and optimized.

Index Terms—Earnings at risk, energy risk management, port-
folio optimization, potential credit exposure, real options, value at
risk.

I. INTRODUCTION

DEREGULATED energy markets and the emergence of
centralized physical markets in electric power run by

the ISO/RTO organizations lead to complexities in managing
market risks in both operations and financial ways. This paper
will cover the kinds of risks faced over different time frames
by “asset operators” or generator/producers. These operators
have to deal withoperational/earningsrisks over the short term
(less than 1 month),trading/financial as well as operational
risks over the intermediate term (1 month–1 year), andasset
valuation/equityrisks over long ( 1 yr) time frames. The kinds
of risks that fall into these time frames have strong analogies to
classical power systems operations, planning, and economics
but additionally, of course, involve market price and financial
risks that require new techniques and mathematics to deal with
them. Some of the methodologies have similarities or origins in
the electric power world; some in the financial world, and some
are truly new incorporating syntheses of both. We develop the
“real option” model of a generator in detail as an exposition
of financial modeling applied to physical asset operations and
then discuss its application to longer term trading and valuation
problems.

II. OPERATIONAL RISK ASSESSMENT

In the regulated world the owner of a portfolio or fleet
of generation plants had to solve the economic dispatch
(minute by minute) and unit commitment (hourly) scheduling
problem—how to most economically schedule the generating
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units considering the unit economics, physical constraints, and
incremental transmission losses such that the operator’s total
commitment to deliver power was met [1]. A load forecast
was assumed as given, and the revenues from the load were
precisely known as rates were fixed. Incremental purchases and
sales of generation from neighboring utilities were analyzed
with the same tools.

The market price based unit commitment problem is central
to risk assessment and management for the fleet owner/operator
across all time horizons, and is our focus.

The “spark spread” model has generally been used to value
a generation asset or a “trade” of power from that asset over a
period of hours to years. The spark spread models the conver-
sion of fuel (gas, oil, coal) into electricity at a specified conver-
sion factor and incorporates the uncertainty (volatility) in the
prices of the fuel and the output electricity. Classical financial
modeling of a “spread option” can be used to “value” the op-
tion, and thus, price the unit’s output—to make a trade or to de-
cide whether or not to schedule production at a given price [9].
Spark spread models are used against long term forecasts of fuel
and electricity prices and long term curves of daily and seasonal
price variations to assist in making investment decisions around
plants in different geographies and time frames.

Spark spread models are increasingly recognized as deficient,
however, for two critical reasons: they fail to represent the non-
linear heat rate characteristics of different generating equipment
and require an average heat rate representation; and they fail
to consider the physical constraints on unit operations as well
as associated costs—rate limits, cycle times, start up costs, and
limits on total unit cycles in a maintenance period [5], [7]. As
a result, spark spread models usually “overvalue” a plant by
10–30%. When used to value an asset for long term financing,
they can produce over optimistic valuations—a fact which rating
and financial institutions have recently realized.

A. Generation Model—Costs and Constraints

The problem is to maximize the net profit from operating
an asset over a specified operating period spanned by the start
and end dates, given a set of prices for fuel and electricity, the
volatilities in those prices in a geometric Brownian motion price
process, and the physical constraints on the operation of the
asset.

The constraints include
hourly minimum and maximum operating ranges;
maximum hour to hour changes in output, or ramp rates;
cycle time constraints, or minimum hours “off” and “on;”
maximum number of cycles in a period.
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Fig. 1. Heat rate function describing generator efficiency.

The most critical cost component is the fuel usage of the plant,
dictated by its efficiency as generally expressed in terms of the
heat rate of the plant (Fig. 1).

The total fuel cost ( ) in any given hour is a function of
the heat rate ( ) at the given output level (), and the spot
price of the fuel ( )

In addition to the total cost of fuel, there is a component of the
variable cost which is independent of the primary fuel type,
used to model maintenance costs, taxes, labor costs, and so
on. Start-up costs include the cost of heating the unit to oper-
ating temperatures. There may also be fixed run charges accrued
whenever the unit is on.

B. State Space Model for Generation Asset

In classical unit commitment formulations, the generator can
have a number of “on” or “off” state and for all combinations of
portfolio generator states in each hour, an economic dispatch al-
gorithm determines the best operating points and thus the “cost”
of that combination. In order to build a real option model of a
unit that can be integrated with a stochastic price process we
define the states as being the output leveland the number
of hours the unit has been on or off, called . The state pair
( ), fully characterizes the operation of the generator
in any hour. In addition it contains all the information needed
to determine which operating states are feasible for the asset in
the next operating hour. The current output combined with the
maximum ramp up and ramp down rates limit the feasible output
levels in the next hour.

C. Discrete State Space Formulation

In order to be able optimize over the possible decisions in
each hour, we first to create a limited number of possible deci-
sions by discretizing the space of possible output levels of the
generator.

This approach assumes that the operator of the asset will al-
ways take full advantage of the ramp capability of the plant.
The concept of ruthless exercise is borrowed from swing option
modeling in finance, where it can often be shown that a ruthless
strategy is always optimal. It is possible to discretize the unit
to accommodate this ruthless ramping philosophy or to specify
discretization levels to capture desirable regimes of plant oper-
ation for nonconvex heat rates (Fig. 3). Fig. 2 is a decision tree
for unit operations arising from a ruthless ramping model.

Fig. 2. Generator decision tree based on dynamic operating constraints.

Fig. 3. Mapping operating costs and revenues to the decision tree.

It is worth noting that, anecdotally, plant operators in Cali-
fornia in 1998 and 1999 tended to operate the units in exactly
this fashion, ramping them at maximum rates based on hourly
market awards and whether a plant was “in the money” or
not. This result is not dissimilar to one that could be predicted
from optimal control theory—a kind of “bang bang” control.
A corollary to the bang-bang conclusion is that the number
of discretization levels required to model the unit should be
the number of time steps required for the unit to ramp to full
load.

D. Optimization for the Deterministic Case

The first step in optimizing the dispatch schedule of the asset
is to superimpose the known future fuel and power prices on
the decision tree. Given these prices it is possible to map the
applicable cost and revenue to each node in the decision tree.

To each node, we assign the cost equal to

And a revenue equal to
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where is the spot price of power, the total fuel cost
from the heat rate, the variable nonfuel cost, a run-
ning cost, and the fixed cost.

Finally, there are costs associated with the branches between
the nodes. This is where startup and shutdown costs are cap-
tured. The revenue and the total running and transition costs
combine to give the profit (or loss) at each node.

Having assigned a P&L value to each node, one can proceed
to search for a profit maximizing path through the decision tree
with a backward iterating dynamic programming algorithm. op-
eration period. This algorithm will produce the optimal dispatch
path and the optimal valuation (P&L) of the asset at every node
along the path.

E. Optimization Under Uncertain Market Conditions

The scheduling optimization algorithm assumes that the oper-
ator of the asset has an exact knowledge of what the spot price of
the fuel and power will be in each hour of the operating period.
In reality, however, there is significant uncertainty associated
with future price levels. Under these conditions, the operators
objective is to maximize the expected profit from scheduling
the asset.

As one approaches a given hour of operation, more informa-
tion becomes available to help forecast the energy prices in this
period (updated weather forecasts for instance). As a result the
operator should be constantly updating his dispatching and spot
trading decisions to reflect the best current knowledge of the
future.

We assume that the spot price of the energy commodity
follows a risk-neutral stochastic process defined in terms of the
logarithm of the price by

with , and the time dependent drift, mean-rever-
sion rate, and volatility, respectively [4].

Therefore, the following types of risk-neutral processes for
the spot price are considered:

i) geometric Brownian motion process with constant
volatility [ and constant];

ii) mean-reverting process with constant volatility and con-
stant mean-reversion rate [ constant and

constant];
iii) mean-reverting process with time varying volatility

and time varying mean-reversion rate .
This model captures two crucial properties of electricity

prices

• seasonality—average power prices vary predictably with
respect to time of day, day of week, and month of year.
This is captured by the time varying drift parameter ;

• mean reversion—prices may suddenly spike, but tend to
return to normal levels within a few hours or days. This
property is captured by the mean reversion rate.

The parameters in this model are typically identified by a max-
imum likelihood estimation process from historical data. Unlike
the classic closed formulations, this approach only requires a
risk neutral assumption, not a no-arbitrage assumption.

The spot price model corresponds to a one-factor futures price
model with a futures price stochastic process under the risk-
neutral measure

and with the futures price instantaneous volatility being
a deterministic function of timeand maturity of the form

This spot price model is used in many financial engineering
models of commodities futures, derivatives, and, in particular,
energy contracts.

As with the decision states, we need to discretize the space of
possible price levels in order to perform the optimization. This
is done utilizing a trinomial-tree based methodology. We ap-
proximate the stochastic process for over a time interval

, where is the valuation date and is the expiry
(end of operation) date, with a trinomial tree process with
time steps. We assume that the initial forward price curve, the
values of the mean-reversion rate function , and of the spot
price volatility function are given.

The trinomial tree approximation of the price process is built
in two stages such that the tree gives an exact match of the ini-
tial forward price term structure which is assumed to be known.
More precisely, the final tree for the price will be such that
for each time slice , the expectation of com-
puted with the risk-neutral tree probabilities equals the forward
price ). This kind of a flexible trinomial tree is widely
used in option valuation [3], [6], [8]. It produces a spot price
distribution as in Fig. 4.

We will refer to a price state in the tree as a node and label the
nodes by , where refers to the time slice (and equals
the number of times steps from ) and indicates the price
level. Thus, will denote the price at node .

The generation option model is valued using amulti-level tri-
nomial tree—trinomial forest—methodology: trinomial tree ap-
proximation of the stochastic evolution of the electricity spot
price in a one-factor model as outlined above, followed by op-
tion valuation by “backward induction” through the trinomial
forest (Fig. 5).

A node in the forest is characterized by time, price, and a pair
(output level, run-time) characterizing the state of the generator,
and thus, labeled by . One can regard the forest
as containing a tree isomorphic to the spot price tree for each
possible generator state .

Working backward from the final date in the exercise period
to the valuation date through the trinomial forest, one computes
the option value at each node in the forest, as the maximum of
the following possibilities—(if these are permitted from the cur-
rent: no change; ramp up, ramp down, turn off, turn on. In each
case, the decision value is the discounted expectation of the op-
tion value at the next time step on the node to which the decision
would branch, plus any transition costs of that decision).

For time steps corresponding to dates prior to the starting
date , one needs only to roll backward the option values from
the nodes at time stepfrom the tree corresponding to the spec-
ified starting state of the generator in order to compute the final
option value at the valuation date .
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Fig. 4. Spot price probability distribution from tree-based model.

Fig. 5. Trinomial forest.

The stochastic optimization algorithm returns two sets of
results

• value of asset over the operation period. This is equal to
the expected P&L earned by optimally dispatching the unit
over this period;

• decision rules for the asset at each time period and op-
erating state and price. The algorithm stores the optimal
dispatch rule at each node in the tree. This includes the
optimal price issued at the current node in the tree.

The decision rule, in effect, enables the scheduler to know the
expected profitability of turning a plant on, ramping, etc. Since
the model is stochastic and incorporates the effect of spot price
volatility, it will produce the correct expectation. A determin-
istic solution taking the expected prices as given will not in gen-
eral produce the correct expectation as it ignores volatility. One
benefit of the model is to show the effect of price volatility on
plant valuation; it also will produce different commitment deci-
sions which take advantage or avoid the consequences of pos-
sible price departures from the expected path.

The tree can also be used to produce a set of decision
rules—what to do at a given node given the state of the unit and
the price, typically generated for each month. A Monte Carlo
simulation of prices can be run through the decision rules to
produce high-speed simulations of optimal unit operations for
a variety of purposes. Using this technique, it is also possible to
simulate random outages and deratings which will be important
in portfolio operations.

Fig. 6. Heat rate impact on spark spreads.

Fig. 7. Ramp rate impact on spark spreads.

F. Comparison With Spark Spread Model

Fig. 6 shows a comparison of the spark spread model and
the real option model of a generator across a range of heat rate
variability—as expected, as the heat rate becomes less constant
the two valuations differ. Fig. 7 shows the effect of ramp rates
on unit valuations.

The effect of ramp rates on valuations is always unfavorable;
a unit with a 4-h ramp time from “idle” to full load is worth 30%
less than the spark spread model would indicate.

Similar variations occur when start-up costs and minimum
run times are considered, and additionally when these are cou-
pled with ramp rates and nonlinear heat rates, the effects in com-
bination produce larger errors. For instance, one of the adverse
effects of a slow ramp rate is to force the unit to spend more
time at less efficient heat rate points.

G. Generation Portfolio Optimization

In a perfectly liquid environment, where all the output of the
plants can be sold without limit, and the total portfolio output
has no effect on the market price, each of the units is an inde-
pendent price taker and a fleet of units can be optimized by in-
dividually optimizing models of each unit as described before.

However, generation fleet operators rarely operate in such a
simple environment. In general, they operate in a complex world
with some of the flavor of the regulated load fulfillment/cost
minimization world and with some of the flavor of a trading and
option selling/exercising world. The typical fleet operator has
an existing portfolio of committed load to serve, regulated and
competitive, plus a portfolio of traded sales/purchases to fulfill.
Typically, the portfolio operator exists in a semi-liquid market
environment where spot purchase/sales can be made to improve
the profitability, indeed to meet load and traded requirements
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above capacity, but also where the total spot purchases may and
probably will impact the market price.

A conceptually simple algorithm for handling the portfolio
problem in an illiquid market with a portfolio of supply commit-
ments is to first model the units as price takers in a liquid market
using real option models of each unit. By running a price fore-
cast for the scheduling period through all the models, a profit
optimizing production schedule for each unit will be obtained.
However, the production schedules of the units, when added up,
will sum to a long or short (excess or deficient) position vs. the
total committed supply.

In a manner analogous to Lagrangian relaxation solutions, the
hourly price forecast can be adjusted iteratively until the total
production output matches the supply commitment. In practice,
however, physical long or short positions are balanced in the
spot market. Bid ask data can be used to maintain a spot market
demand/supply curve which becomes a market or slack unit in
the portfolio. Now, as the market price is adjusted in each hour to
eliminate portfolio imbalance, the “market” unit will contribute
more or less as well until the imbalance is zeroed out. At this
solution point, the solved for market price reflects the market
reaction to additional purchases/sales in the spot market, and
the units are profit optimized against the resulting price curve
and balanced against supply commitments at that price in the
spot market.

Physical options in the trading portfolio can similarly be mod-
eled and this methodology will indicate when they should be ex-
ercised to improve expected P&L, as well as to anticipate when
sold options will likely be called.

The trinomial forest grows linearly with the number of time
steps in the scheduling horizon as the price process saturates
due to mean reversion. Even so, the models are computationally
intensive for periods of more than a week or two.

The real option model can be used to produce a value surface
which provides valuations and greeks (derivatives of value wrt
to prices) as a function of fuel and electricity prices. This value
surface will be representative of the unit value with sufficient
accuracy for a longer term solution—it captures the intra-day
and intra-week optionality value of the unit considering all the
physical characteristics. The value surface can then be used di-
rectly in the Monte Carlo VAR process very efficiently.

For longer term hour by hour simulations where hourly
behavior is modeled the model decision rule which looks at
fuel, electricity prices, and the “state” of the unit can be used
very efficiently in random price path simulations for long term
valuations.

The performance of the model and of the stochastic port-
folio optimization is competitive with alternatives—both spark
spread models and deterministic unit commitment. Because the
models in a portfolio are valued and simulated independently of
each other, and because the dispersion of nodes in the forest is
bounded by mean reversion, the run times increase linearly with
both the time span of the problem and the number of units in the
portfolio.

III. I NTERMEDIATE TERM RISK MANAGEMENT

In the period ranging from weeks to a year or more, the
market risk is dominated by fluctuations in the forward price

curves and their correlation. Operational issues are less im-
portant than trading and hedging decision making. It remains
important to represent the hourly granularity of price, demand,
and best practice operational behavior in the intermediate term
analyzes and simulations, but the decision support questions
are around monthly forward contracts. Hourly forward prices
are generally not available for the out months and have to be
simulated and related to the monthly prices that are available.

A. Value at Risk

The primary risk assessment metric in this time frame is value
at risk, VAR, and related applications of the same methodology
used to assess cash flow at risk, earnings at risk, and credit ex-
posure. VAR is the classic risk management tool widely used by
financial institutions and corporate treasury functions in many
industries. It measures the minimum occasional loss expected
in a given portfolio within a stated time period. Thus a one-day
95% VAR of U.S.$ 2 000 000 means that the single day loss will
be less than U.S.$ 2 000 000 95% of the time and 5% of the time
the loss should be greater. There are many excellent references
on VAR in the literature, and a good number deal with VAR ap-
plied to energy trading.

VAR measures the change in the portfolio value through the
end of the specified time horizon. Changes in portfolio value are
marked to market for all forward periods, so VAR measures risk
in the portfolio value for the total period.

For an operational business such as power generation, VAR
may not be the single most useful metric available. For such a
business, the bulk of trades are physical trades for delivery or op-
tions on physical energy sold as hedges on unsold generation or
peak load commitments. Per FAS 133, hedges on the operational
business which are deemed effective, that is, sufficiently corre-
lated with the profitability of specific physical trades/schedules,
need not be marked to market for periodic P&L reporting and
instead the cost of the hedge (the premium to buy the option) is
expensed as an operating cost. 90% of the trades in large power
producers’ books may be physical trades or hedges on them;
with only 10% “derivative” trades that are deemed speculative
and have to be marked to market.

B. Earnings and Cash Flow at Risk

In these cases alternative risk metrics such as earnings at risk
(EAR) and cash flow at risk (CFAR) are more important. EAR
measures the variability in accrued earning from physical deliv-
eries made and financial positions that settle during the period. It
does not include any change in the ongoing portfolio value after
the risk time horizon as VAR does. CFAR differs from EAR
only in that payment dates on settled trades/deliveries have to
be considered for cash flow purposes; and these can vary any-
where from end of day in some pools to 30 days after the end
of the month for some over the counter bilateral contracts. EAR
and CFAR require hourly representations of price processes and
production, and detailed analyzes of each contract in order to
be accurate. Incorporation of decision rules and value surfaces
from real option models is essential to EAR and CFAR validity.
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C. VAR Estimation

VAR, EAR, and CFAR are all estimated using the same basic
methodology. Given the volatilities and the correlations of the
prices of the commodities in the portfolio, the distribution of
portfolio returns is analyzed to identify a confidence level for
the left tail. If an instrument’s returns are normally distributed

VAR

where is the confidence level (1.65 for a 95% level),is the
annualized standard deviation of returns,is the initial mark
to market value of the instrument, and is the time horizon
in years. This approach is complicated a bit for total portfolio
returns by the covariance of the instruments. Typically, a vari-
ance-covariance approach is used in which

VAR

and is diagonal matrix of instrument returns andis their
within-period covariance matrix [10]. This is sometimes called
the “delta-normal” approach, since thematrices may contain
the delta (first order) equivalents of positions that are less liquid.
Obviously, the accuracy of this closed form calculation is lim-
ited by the normality of the expected returns and the extent to
which the positions have well behaved, linear returns. This is
rarely the case for energy contracts due to the decidedly nonlog
normal behavior of energy prices and the nonlinear behavior of
many energy instruments such as swing contracts, interruptible
supply contracts, and more complex derivatives.

Higher order approximations are sometime used, but sim-
ulation approaches dominate in the tools used for larger and
more complex portfolios. Here, correlated prices at multiple lo-
cations and times are simulated in a Monte Carlo process where
a variety of techniques can be used to model nonlog energy
price behavior. Valuing each position for each price simulation
is straightforward, even for path dependent instruments.

Detailed MC VAR calculations can be cumbersome to run.
For a portfolio with 100 000 to 500 000 open positions in trades
and contracts that involve 500–1000 different market prices it
may require several hours to perform a detailed analysis. En-
ergy firms typically have to consider so many market prices
due to the locational variability of energy prices. Normally lo-
cational prices are tightly correlated to major hub prices, but in
times of high demand and transportation bottlenecks the loca-
tional or basis prices can deviate significantly. In order to reduce
the number of prices modeled, principle component analysis is
often used to reduce the dimensionality of the problem; addi-
tionally quasi-Monte Carlo techniques can be used to achieve a
linear rather than square root growth in the number of simula-
tions required to increase the precision of the results.

An important variation of VAR is the Conditional VAR or
CVAR. Where VAR establishes the loss at the 95% level, it does
not measure the expected loss. CVAR is the integral of the loss
distribution and measures, instead, the expected amount of loss
given that it is greater than the 95% level. As such it is a more
meaningful metric. Also, because it is an integral it is inher-
ently better behaved mathematically and more tractable in, for
instance, portfolio optimization.

Such calculations also must consider the volumetric risk in
full requirements contracts—peak load demand varies with
weather, and peak demand correlates with price spikes. So
these contracts require not only price simulation but correlated
demand simulation for valuation. It is not sufficient to only
vary a fixed daily load shape of hourly values, since prices are
sensitive to regional loads in a highly nonlinear fashion. Hourly
modeling is typically used for small portfolios, and nonlinear
correlation methods for larger portfolios.

Early attempts to solve the EAR and related problems would
typically subject a single, deterministically obtained, portfolio
schedule to a Monte Carlo analysis of different prices after the
schedule determination. This methodology ignores the opera-
tional flexibility and ability to react to new operation. Another
approach was to schedule against each simulated price path; this
builds in an assumption of perfect foreknowledge in operations.
Both of these approaches are invalid and unsatisfactory; thus
the need for the stochastic dynamic programming real option
approach.

By running Monte Carlo simulations through the tree-derived
decision rules described in Section II-E it is possible develop
tractable value surfaces which can be used to quickly value a
generation plant or other real option at each step in the Monte
Carlo price path. This enables the effective incorporation of all
the physical constraints and nonlinearities of the real asset into
the VAR and other metrics. The ultimate performance constraint
on VAR calculations is that they must be produced at least daily;
the use of this technique makes detailed modeling possible in
daily VAR runs.

D. Credit Exposure

In the financial world, credit exposure has two compo-
nents—a change in the credit rating of a corporation affects
the value of bonds that it has issued, and thus the value of
a portfolio containing those bonds. Also, depending upon
the credit rating of the issuer, there are varying probabilities
of default that can be used to assess the risk of the bond’s
value disappearing in a default/bankruptcy scenario. This is
traditional credit risk.

In the energy industry, the primary credit risk has been the de-
fault risk, either of supply of contracted deliveries or of making
payment on settled trades. Added to this is the replacement risk
of, for instance, acquiring power on the spot market to replace
the defaulted delivery. Given that a delivery default may corre-
late strongly with price peaks, the replacement power can be at
a real premium over the original contract. This potential credit
exposure has not been routinely measured by energy firms but
is being focused on in today’s environment as equal in priority
to VAR and EAR. Ratings become a major concern in energy
credit risk assessment due to the linkage of ratings declines to
debt triggers and consequent liquidity crises. Potential credit ex-
posure is analyzed with Monte Carlo techniques similar to VAR,
although default probabilities are difficult to establish.

In June 2002 Standard & Poor identified liquidity risk due to
margin calls as a major factor in the creditworthiness of energy
trading firms. S&P announced that henceforth it would require
firms to report the cash exposure they had to margin calls under
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stress tested conditions; in other words, to add to the calcula-
tions of VAR, EAR, etc., a calculation of cash position risk due
to margin calls. Computationally simple, this calculation is pro-
grammatically tedious since each contract may have different
applicable margin requirements.

E. Transmission Congestion

Transmission congestion can be hedged by owning transmis-
sion congestion contracts (TCCs) or firm transmission rights
(FTRs) in transmission markets where they are available. TCCs
pay off based on the price difference between their “from and to”
nodal locations in an locational-based marginal pricing (LBMP)
environment and can be represented as a swap—trading one
commodity for another, and settled financially. Thus, they per-
fectly hedge the market exposure to LBMP. A producer who
uses TCCs to hedge a physical delivery position will not only
hedge against LBMP incremental costs, he will also concede
any profit opportunities from reverse congestion. FTRs only pay
off in one direction; therefore, they are represented as swaptions
or options on a swap. Modeling and valuing transmission con-
tracts as swaps assumes that they are perfectly correlated with
underlying locational prices; an area of current interest is how
to incorporate factors such as transmission and unit outages into
simulations used for valuation purposes.

F. Portfolio Optimization

In classic portfolio theory, optimizing the expected return for
a specified level of risk is a well-known problem [11]. There are
three dimensions to the problem—the expected return (or P&L)
on each instrument in the portfolio; the risk in that return (as
measured by standard deviation in the expected return, or alter-
natively by the VAR); and the quantity of each instrument held.
The latter of these is the choice variable. Simplistically, portfolio
optimization is the search for a vector of quantities that satisfies
a number of constraints and provides minimum total variance
with maximum return. There are typically many such vectors,
and their risk/return metrics comprise the “efficient frontier”
of this problem space as shown in Fig. 8. Any imperfect cor-
relation, positive or negative, between two different assets or
positions allows the creation of optimal portfolios. As prices,
volatilities and correlations of the component positions change,
the set of optimal quantity vectors also moves. At this point, the
transactions costs of maintaining a desirable portfolio become a
complicating factor in dynamically hedging (optimizing) a port-
folio over time.

This problem is of great interest in the energy world to un-
regulated market participants, and is becoming more interesting
to many regulated local distribution companies (LDC) as well,
and, potentially, to ISOs that act as single buyers. In many states
the cost of hedging volumetric risk (load peak) has been recog-
nized as a legitimate cost of service for LDCs. In the past, this
was handled physically, by maintaining reserve margins. Today
it is often handled by purchasing capacity options, swing con-
tracts, weather derivatives, and other physical and financial in-
struments that provide a hedge to the LDC against high loads.
In order to recover all the costs of that hedging, the LDC needs
to show that it is following prudent practice—both in terms of
its assessment of relevant risks and its expenditures to hedging

Fig. 8. Portfolio optimization space.

against them. Portfolio optimization provides the vehicle to do
this. The generation operator must consider how to price phys-
ical options, how many to hold to hedge against outage and vol-
umetric risk, and how many transmission hedges to hold against
specific locations and times.

In the intermediate term, the portfolio optimization problem
is largely a trading and hedging problem and the major chal-
lenges in implementation are focused on simulations that ef-
fectively span the complete space of instrument returns—and
quickly enough to be useful—and on robust optimization or
searching that can solve the problem in usable time frames. Al-
gorithms in use for the energy portfolio optimization problem
include iterative quadratic programming techniques and TABU
search engines.

Problems in portfolio optimization include how to realisti-
cally group many detailed physical forward positions into syn-
thetic aggregate positions for use in optimization; and how to
incorporate constraints on other risk metrics such as EAR and
CFAR in addition to VAR.

IV. L ONG-TERM ASSETVALUATION

Beyond the time frame of the markets for liquid traded energy
instruments, the key focus is upon understanding the market
risks that affect the value of energy assets whose operational
lifetimes typically extend 20 to 30 years or more. Forward price
curves going out several years are readily available in the oil
and natural gas markets, underpinned by the key futures con-
tracts for these commodities listed on the NYMEX exchange.
In electricity, however, price discovery has yet to extend much
beyond a time frame of 18 months to two years.

Energy deregulation has been accompanied by significant
investment and divestiture activity, involving both the transfer of
existing assets and the construction of new facilities. Motivations
include regulatory edict, business refocusing, and balance sheet
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improvement efforts. In the U.S., the level of generation capacity
transferred from utility to nonutility ownership has ranged from
23 to 51 GW annually over the past four years. In terms of
greenfield projects, it has been reported that more power plants
will have been commissioned in the U.S. during 2001 and
2002 than were added in all of the 1990s. All this investment
activity places a considerable emphasis upon asset valuation.

The fundamental challenges of asset valuation—modeling
the evolution of forward price curves and the operational P&L
of the assets against them—is essentially the same as that
involved in intermediate term risk management. However,
additional risk drivers need to be considered, drivers that
can usually be safely ignored over shorter time scales. These
include such factors as technology risk and regulatory risk.

Natural gas-fired combined cycle gas turbines (CCGTs)
have long been the new generation technology of choice
in many regions. Enhancements in turbine technology have
produced steady improvements in plant heat rates over the past
decade, undermining the market competitiveness of early CCGT
stations. As a result, long term asset valuation studies often
include assumptions on the rate of technological innovation
(reductions in heat rate and/or capital costs) for benchmark new
entrant generation technologies. These assumptions determine
the market prices at which new entrants will break even—the
long run marginal cost of electricity generation in classical
economics and a key consideration in many market analyzes
over this time frame. Harder to model is the possibility of
a breakthrough in alternative generation technologies, such
as clean coal or fuel cells. From a wider perspective, large-
scale generation plants face competitive threats through the
development and application of distributed generation and
demand-side management technologies.

California’s electricity restructuring experience has dramat-
ically highlighted the regulatory risks inherent in the energy
sector. Price caps and fundamental market rule changes can sig-
nificantly influence the economics of operating and investing
in deregulated electricity markets. Even relatively successful
market designs have witnessed a steady stream of rule changes
and enhancements aimed at correcting perceived design flaws
and improving operational efficiency. Only a handful of dereg-
ulated power markets around the world, such as England, Wales,
and Norway, have been operational for more than ten years:
none of these markets could yet be characterized as mature. It is
reasonable to expect that the market and regulatory frameworks
will continue to evolve in the future, although it is far from
straightforward to incorporate the possibility of such changes
in an asset valuation model. Environmental policy presents an-
other area of considerable regulatory risk for the power sector,
with the potential to significantly impact the relative competi-
tiveness of different generation asset types.

A. Scenario Analysis and Production Cost Models

Scenario analysis utilizing production cost models has prob-
ably featured in the majority of asset valuation studies over the
past decade. This approach typically involves examining the
fundamental market drivers and then developing scenario-based
price projections using detailed models of the production fa-
cilities in the region of interest. Aggregate industry supply and

demand curves are built up for the regional marketplace under
each set of scenario assumptions. After the characteristics of
all existing and planned generation facilities in the region are
compiled, plants are stacked up in order of increasing expected
production cost. The model then determines the plant output
levels and market clearing prices at which projected aggregate
demand is met at minimum cost. Key scenario variables might
include fuel prices, new plant build costs, and environmental
restrictions.

A production cost model can be as simple as a spread-
sheet, providing a static snapshot of supply in the region.
Most models, however, apply linear or dynamic programming
techniques to determine equilibrium prices and output levels,
enabling more complex factors such as plant dynamic char-
acteristics, transmission congestion, and emission allowances
to be accounted for. Some of these models are essentially
stripped-down variants of the unit commitment algorithms re-
ferred to in the first part of this paper, suitably modified to run
multiyear studies utilizing several characteristic days per year.
Plant build and retirement decisions can be incorporated in the
model optimization process, given assumptions on the range
of available new entrant technologies. In other formulations,
these decisions are treated as scenario variables, subject to
review and subsequent iteration.

Experience has exposed drawbacks to relying on production
cost based models for long term valuation purposes. First, cost-
based production models rarely reproduce all the features of ob-
served market prices. Electricity spot prices are generally well
behaved at low demand levels and often show a strong correla-
tion to underlying cost drivers at such times, but this relation-
ship tends to break down at higher load levels. Compared to the
results of cost-based models, actual market prices typically ex-
hibit much greater volatility and more frequent price spikes. As
a result, cost-based models can significantly undervalue gener-
ation assets.

The strategic bidding behavior of market participants often
contributes to this discrepancy because players exerting market
power often elevate prices above cost-based levels, particularly
as the margin of supply over demand tightens. By drawing upon
game-theory approaches such as Cournot pricing, it is possible
to extend the cost-based modeling framework to incorporate
strategic bidding considerations. However, even these extended
production cost models still tend to be geared toward analyzing
equilibrium market conditions. As such, they fail to replicate the
dynamic nature of the price setting process in deregulated elec-
tricity markets.

This highlights a second significant drawback of traditional
production cost models—their inability to adequately address
market price uncertainty. Traditional models are generally deter-
ministic in nature, with plant output choices made in full knowl-
edge of the paths of key input variables such as fuel costs and
demand. As discussed earlier in this paper, operational decisions
in the real world have to be made on the basis of uncertain views
of the future. Even if multiple scenarios are run by sampling a
range of possible values for key parameters, most models will
not overcome their perfect foresight and will therefore tend to
produce over-optimistic valuations.

The third disadvantage of production cost modeling relates to
changes in the level of information transparency resulting from
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electricity deregulation. The traditional models tend to require
extensive knowledge of generation production costs and trans-
mission system conditions for all facilities in a region, regard-
less of who owns them. While this information was historically
available in the regulated world, it is now increasingly regarded
as commercially confidential in the competitive marketplace.
Conversely, conventional generation models often fail to cap-
italize on the rich pricing information now obtainable in spot
and forward markets.

These shortcomings have resulted in the production
cost-based scenario approach to asset valuation being sup-
planted or augmented by techniques more adequately suited
to supporting trading and investment decisions in the face of
highly volatile prices and dynamic, uncertain market condi-
tions. The stochastic real option models described in this paper,
used via value surfaces, lend themselves to longer term scenario
valuation exercises. With current technology, it is feasible to
obtain multiple year simulations in compute times on the order
of an hour or less.

B. Real Options and Dynamic Portfolio Optimization

Leading merchant generators have sought to reduce their ex-
posure to specific regional markets by building a broad geo-
graphic portfolio of assets. This portfolio approach enables them
to mitigate the impact of an adverse change in market prices or
regulations in a given region. Furthermore, at any one time, a
merchant generating company typically has a range of projects
at various stages of operation or development. This provides a
valuable portfolio of real options since the merchant generator
may choose to accelerate, expand, postpone, scale back or sell
a given project. Having advanced a project through the siting
and permitting phases, a developer may decide to defer con-
struction until the implied spark spread in the forward markets
is sufficiently attractive to begin hedging the plant’s expected
output. By employing a portfolio risk management approach,
merchant generators can ensure that their capital and construc-
tion resources are directed to the most attractive development
opportunities.

In financial terms, real strategic options such as the ability
to expand capacity or mothball a generation plant can be con-
sidered as compound options [2]. The fixed costs incurred or
avoided represent the option fee on a spark spread option be-
tween fuel and power.

The portfolio optimization techniques outlined in the inter-
mediate term section can be extended to help value these and
other real options. The intermediate term problem was limited
to portfolios of traded energy instruments. Over the long term,
assets such as power plants can also be bought and sold. The ob-
jective is to dynamically optimize the mix of generation assets
in the overall portfolio with respect to the corporate risk pro-
file, taking into account the time lags in the investment process
and the discrete nature of generation assets. The results provide
insights into the composition of asset portfolios that maximize
expected returns over a given time horizon while satisfying key

risk metrics such as EAR or CFAR. Portfolio optimization as
understood today is a static problem considering a portfolio at
one point in time—there is need for theoretical and algorithmic
development in dynamic, decision contingent optimization over
a time horizon.

V. CONCLUSIONS

We have demonstrated a real option model for power gener-
ation that can be used in valuing the asset and in determining
optimal stochastic schedules, and in optimizing the schedules
of a portfolio of assets in an illiquid market. Then we have dis-
cussed the intermediate and longer term risk management prob-
lems and how these real option models factor into trading and
investment risk management, and portfolio optimization.
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